-
Bài tập tự luyện dạng 2
Câu 1:
Tính giá trị của biểu thức sau
a) \[{{\left( \sqrt[3]{3}+\sqrt[3]{2} \right)}^{3}}\] b) \[\left( \sqrt[3]{5}-\sqrt[3]{3} \right).\left( \sqrt[3]{25}+\sqrt[3]{15}+\sqrt[3]{9} \right)\]
c) \[\sqrt[3]{162}.\sqrt[3]{-2}.\sqrt[3]{\frac{2}{3}}\] d) \[\sqrt[3]{2}:\sqrt[3]{16}-\sqrt[3]{22\frac{1}{2}}:\sqrt[3]{53\frac{1}{3}}\]
Câu 2:
Rút gọn biểu thức:
a) \[\sqrt[3]{3}.(5\sqrt[3]{18}-\sqrt[3]{144})+\sqrt[3]{5}.\sqrt[3]{50}\] b) \[\left( 12.\sqrt[3]{2}+\sqrt[3]{16}-2.\sqrt[3]{2} \right).\left( 5.\sqrt[3]{4}-3.\sqrt[3]{\frac{1}{2}} \right)\]
Câu 3:
Tính
a) \[A=\frac{\sqrt[3]{4}+\sqrt[3]{2}+2}{\sqrt[3]{4}+\sqrt[3]{2}+1}\] b) \[B=\sqrt{3+\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}}\]
c) \[C=\frac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}\]
Câu 4:
Thực hiện phép tính sau
a) \[A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\] b) \[A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\]
c) \[C=\left( 2-\sqrt{3} \right).\sqrt[3]{26+15\sqrt{3}}\]
LỜI GIẢI BÀI TẬP TỰ LUYỆN
Câu 1:
a) \[5+3\sqrt[3]{6}.\left( \sqrt[3]{3}+\sqrt[3]{2} \right).\] b) \[2.\] c) \[-6.\] d) \[-\frac{1}{4}.\]
Câu 2:
a) \[14\sqrt[3]{2}.\] b) \[84.\]
Câu 3:
a) \[A=\frac{\sqrt[3]{4}+\sqrt[3]{2}+2}{\sqrt[3]{4}+\sqrt[3]{2}+1}=\frac{\sqrt[3]{4}+\sqrt[3]{2}+\sqrt[3]{8}}{\sqrt[3]{4}+\sqrt[3]{2}+1}=\frac{\sqrt[3]{2}.\left( \sqrt[3]{4}+\sqrt[3]{2}+1 \right)}{\sqrt[3]{4}+\sqrt[3]{2}+1}=\sqrt[3]{2}.\]
b) \[B=\sqrt{3+\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}}.\] Ta có : \[\sqrt[3]{10+6\sqrt{3}}=\sqrt{3}+1\Rightarrow B=\sqrt{3}+1.\]
c) \[C=\frac{4+2\sqrt{3}}{\sqrt{3}+1}=\frac{{{\left( \sqrt{3}+1 \right)}^{2}}}{\sqrt{3}+1}=\sqrt{3}+1\].
Câu 4:
a) \[A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\]
\[=\sqrt[3]{{{\left( \frac{1+\sqrt{5}}{2} \right)}^{3}}}+\sqrt[3]{{{\left( \frac{1-\sqrt{5}}{2} \right)}^{3}}}\]
\[=\frac{1+\sqrt{5}}{2}+\frac{1-\sqrt{5}}{2}\]
\[=1.\]
b) \[B=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\]
\[=\sqrt[3]{{{\left( \frac{3+\sqrt{5}}{2} \right)}^{3}}}+\sqrt[3]{{{\left( \frac{3-\sqrt{5}}{2} \right)}^{3}}}\]
\[=\frac{3+\sqrt{5}}{2}+\frac{3-\sqrt{5}}{2}\]
\[=3.\]
c) Ta có \[26+15\sqrt{3}={{\left( 2+\sqrt{3} \right)}^{3}}\]nên \[C=\left( 2-\sqrt{3} \right).\sqrt[3]{{{\left( 2+\sqrt{3} \right)}^{3}}}=\left( 2-\sqrt{3} \right)\left( 2+\sqrt{3} \right)=1.\]